f08 — Least-squares and Eigenvalue Problems (LAPACK) f08auc

NAG C Library Function Document

nag zunmgqr (f08auc)

1 Purpose

nag_zunmgqr (f08auc) multiplies an arbitrary complex matrix C' by the complex unitary matrix () from a
QR factorization computed by nag_zgeqrf (f08asc) or nag_zgeqpf (f08bsc).

2 Specification

void nag_zunmgr (Nag_OrderType order, Nag_SideType side, Nag_TransType trans,
Integer m, Integer n, Integer k, const Complex a[], Integer pda,
const Complex tau[], Complex c[], Integer pdc, NagError *fail)

3 Description

nag_zunmgqr (f08auc) is intended to be used after a call to nag_zgeqrf (f08asc) or nag_zgeqpf (f08bsc),
which perform a QR factorization of a complex matrix A. The unitary matrix () is represented as a
product of elementary reflectors.

This function may be used to form one of the matrix products
QC, Q"C, CQ or CQ",
overwriting the result on C' (which may be any complex rectangular matrix).

A common application of this function is in solving linear least-squares problems, as described in the fO8
Chapter Introduction, and illustrated in Section 9 of the document for nag_zgeqrf (f08asc).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: side — Nag_SideType Input
On entry: indicates how Q or Q7 is to be applied to C' as follows:
if side = Nag_LeftSide, Q or Q" is applied to C' from the left;

if side = Nag_RightSide, Q or Q" is applied to C from the right.
Constraint. side = Nag_LeftSide or Nag_RightSide.

3: trans — Nag TransType Input

On entry: indicates whether Q or Q* is to be applied to C as follows:

[NP3645/7] f08auc.1

f08auc NAG C Library Manual

if trans = Nag NoTrans, () is applied to C}
if trans = Nag_ConjTrans, Q" is applied to C.

Constraint. trans = Nag NoTrans or Nag_ConjTrans.

4: m — Integer Input
On entry: m, the number of rows of the matrix C.

Constraint: m > 0.

5: n — Integer Input
On entry: n, the number of columns of the matrix C.

Constraint: n > 0.

6: k — Integer Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q).
Constraints:

if side = Nag_LeftSide, m > k > 0;
if side = Nag_RightSide, n > k > 0.

7: a[dim| — Complex Input/Output

Note: the dimension, dim, of the array a must be at least
max(1,pda x k) when order = Nag_ColMajor;
max(1, pda x m) when order = Nag_RowMajor and side = Nag_LeftSide;
max(1, pda x n) when order = Nag_ RowMajor and side = Nag_RightSide.

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag zgeqrf
(f08asc) or nag zgeqpf (f08bsc).

On exit: used as internal workspace prior to being restored and hence is unchanged.

8: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor,
if side = Nag_LeftSide, pda > max(1, m);
if side = Nag_RightSide, pda > max(1,n);

if order = Nag RowMajor, pda > max(1, k).

9: tau[dim| — const Complex Input
Note: the dimension, dim, of the array tau must be at least max(1, k).
On entry: further details of the elementary reflectors, as returned by nag zgeqrf (f08asc) or
nag_zgeqpf (f08bsc).

10: c¢[dim] — Complex Input/Output

Note: the dimension, dim, of the array ¢ must be at least max(l,pdc x n) when
order = Nag_ColMajor and at least max(1, pdc x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (¢, j)th element of the matrix C is stored in ¢[(j — 1) x pde + 4 — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix C' is stored in ¢[(i — 1) x pde+ j — 1].

f08auc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

12:

6

On entry: the m by n matrix C.

f08auc

On exit: ¢ is overwritten by QC or Q”C or CQ or CQ" as specified by side and trans.

pdc — Integer

Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in

the array c.
Constraints:
if order = Nag_ColMajor, pdc > max(1, m);
if order = Nag_RowMajor, pdc > max(1,n).
fail — NagError *

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pde = (value).
Constraint: pde > 0.

NE_INT 2

On entry, pda = (value), k = (value).
Constraint: pda > max(1, k).

On entry, pde = (value), m = (value).
Constraint: pde > max(1, m).

On entry, pde = (value), n = (value).
Constraint: pde > max(1,n).

NE_ENUM_INT 3

On entry, side = (value), m = (value), n = (value), k = (value).
Constraint: if side = Nag_LeftSide, m > k > 0;
if side = Nag_RightSide, n > k > 0.

On entry, side = (value), m = (value), n = (value), pda = (value).
Constraint: if side = Nag_LeftSide, pda > max(1, m);
if side = Nag_RightSide, pda > max(1,n).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

[NP3645/7]

Output

f08auc.3

f08auc NAG C Library Manual

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed result differs from the exact result by a matrix £ such that
1E]l, = O(ICll,,

where € is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately 8nk(2m — k) if side = Nag_LeftSide
and 8mk(2n — k) if side = Nag_RightSide.

The real analogue of this function is nag_dormqr (f08agc).

9 Example

See Section 9 of the document for nag_zgeqrf (f08asc).

f08auc.4 (last) [NP3645/7]

	f08auc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	trans
	m
	n
	k
	a
	pda
	tau
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

